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NOMENCLATURE

E Young's modulus of the test vmaterial

E c Young's modulus in compression of the test material

ET Young's modulus in tension of the test material

F The probability of failure of a component

G Shear modulus of the beam material

I Moment of inertia for a rectangular beam (I - bd 3/12)

(Ixx~c Moment of inertia for a rectangular beam with 450 chamfered corners
(See Appendix F)

(Ixx)r Moment of Inertia for a rectangular beam with round corners (See
Appendix F)

L Outer span length for a four-point and a three-point loaded beam

LT Total length of beam

M Weibull slope parameter, the "Weibull Modulus" associated with either
volume or surface sensitive material

Mb General moment applied to beam

Mx Bending moment as a function of x (See Appendix D or E)

P General applied force

P1 ,P 2,P 3 ,P4 Forces applied to a beam (See Figure 1)

S e Effective surface of a beam in bending

Tb Torque associated with beam twisting

Tb Estimated torque when bottoming of'the load fixture occurs
e (See Appendix C)

V Volume of a beam in bending

V Effective volume of a beam in bending (See Weibull Analysis)e

V VLlu'ne of a three-point loaded beam (VL = Lbd) in the risk of rupture
equat ion

a Half the distance between the inner span and outer span for a four-
point loaded beam, i.e., (L-L)/2 or a=L/2 for a three-point loaded
beam (note a, = a2 = a)

al and a2  A beam dimension (See Figures 1 and 2)

b Beam width (See Figure 1 or 5)

c Chamfer of a corner of a beam v.,ith 450 chamfers (See Figure 5)

d Beam depth (See Figure 1 or 5)

e Load eccentricity equal to (al-a)

e/L Load eccentricity ratio equal to (a 1-a)/L

ec Shift of neutral axis in an initially curved beam
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03 Error in the specimen diemnsions b or d

es Error In the span lengths t or L

hl, h2  'Horizontal shift of contact and load points due to beam bending
(See Figure 4)

kj, k2  A numerical factor dependent upon b/d (See Appendix C)

t Inner span length of a four-point loaded bea (See figure 1)

A' Either equal to "a" or L/2 for four-point or three-point beam systems.

n Numerical factor (See Equation 18b)

Maximum contact pressure at the load application point

r Radius of the corners of the beam (See Figure 5)

s Speed of loading

t Time of loading

Xl,X2,X 3  Vaziable beam distances (See Figure lc)

x1 Variable distance (failure site location) on either side of the load
contact point (See Appendix D)

Xy Coordinate axes (See Figure 1)

y Can also be displacement or distance from neutral axis as defined in
the text

% a c Beam curvature parameters (See Equations 3a and 4a)

8 Anticlastic curvature factor (See Appendix A)

8 T A numerical factor associated with the tensile stress caused by load
contact (See Appendix D)

y Y = /_3(l-v 2 )/d 2 p 2 (See Appendix A)

ex 'Eez Strain in the x, y, and z directions

Strain rate

Percent error, defined as [(a -a )/a ]100. A negative error indicates
the simple beam equations la knd~lb underestimate the true stress; a
positive error is an overestimate.

e Angle of a plane inclined to x-axis

6* Angle of a plane inclined to the x-axis at which the principal stress
is maximum

Coefficient of friction

v Poisson's ratio

P Radius of curvature of a beam due to bending

P l Contact radius of a support point (See Figure 4)

02 Contact radius of a load point (See Figure 4)

Pc Initial radius of the curvature of a beam

ab Bending stress in a beam as defined by simple beam theory or mean
fracture stress

vi



an Normal stress (See Appendix C)

anaA Maximum principal stress (See Appendix C)

a 0Scale parameter or characteristic value associated with a Weibull

analysis

a x Stress in the x direction (along the beam length)

a z Stress in the z direction (along the beam width)

x XY Shear stress due to torsion (See Appendix C)

Angle of twist along the specimen length (See Figure 3 and Appendix C)
in Radians

OF Angle of twist between a pair of load and contact points (See Figure 3
and Appendix C) in Radians

vii



INTRODUCTION

There has been an increase in interest and activity in recent years in both the
research and development of ceramic materials ard their practical application to
engineering structures.

Flexural testing is (and will likely remain) the primary source of uniaxial
strength data, either for quality control or design data purposes. An impediment to
the use of flexural strength data in either application is the lack of standard test
methods and the presence of experimental error in current practices.

In 1973, a tentative unapproved set of standards* was prepared by the Army
Materials and Mechanics Research Center (ANMRC) as it was called at that time, and
distributed to interested and involved organizations. This set of unofficial stand-
ards, which included such test methods as flexure, tension, creep, stress rupture,
fatigue, and spin testing, was discussed at several meetings of government and in-
dustry representatives. A number of wo,.thwhile suggestions evolved. However, it
was apparent that these tentative standards were inadequate and thus not approved.
Recently, however, interest was revived at AM4RC, now called the U.S. Army Materials
Technology Laboratory (MTL), in finalizing standard tests for brittle materials. It
was viewed that the original tentative standards, dated 2 April 1973, represented
the ideal goal but were far too inclusive to realistically establish testing require-
ments which would provide valid results at this time. It was decided to concentrate
upon developing a standard method for flexural strength testing.

The objective of this report is to recommend bean test systems such that accu-
rate fracture strength measurements will result when testing brittle materials
within the elastic regime. This report differs from Reference 1 in the following
ways:

1. Discussions of a "Reference Standard" beam system have been deleted in
deference to a different approach adopted in Reference 2.

2. The error table for nonlinear stress has been eliminated because it was

redundant with errors analyzed from "wedging stresses."

3. The twisting error analysis has been reanalyzed as a plane stress condition.

4. Additional analyses, refinements, and corrections to the original work have
been included where appropriate.

No attempt has been made to determine the influence of each error upon the
total error of the system. It is assumed that each error is independent of all the
other error sourcos. Thus, for consistency and simplicity, the total error within
the system is assumed to be the sum of the parts. Errors in flexure testing of
beams are either due to assumptions entailed in simple beam theory, or to sourees
arising from external load applications. The sources of error are discussed in the
following sections.

Ml*itary Stanaudk Test Methods for Structurl Ceamics, 2 April 1973.
1. BARATTA, F. 1. Requivmnwnt ftr Fkxwv Teatier of liii. MaterfL• U. S. Army Materiah and Mechanics Re•vech Center, AMMRC

TR 82-20, April 1982, ADA 113937.
2. U. S& ARMY MILT1942 (MR). Flxur Tatng off HPerbomwuw. Ceamma atAmxbent Temperthwe November 1983.



ERRORS FROM SIMPLE BEAM THEORY ASSUMPTIONS

The rectangular beam configuration is attractive as a strength-test vehicle
because of its simple shape and apparent ease of load application, as well as
analysis and reduction of data. Rods of circular cross section are also used in
beam tests, but usually for spncialized testing. Because a beam of. circular cross
section is not as frequently used as the rectangular beam, only the rectangular
cross section is exeamined in the discussions to follow. Referring to Figures Is and
2a for dimensions and appliel loads, the simple beam formulas for maximum stress in
flexure are:

a 3P(L-L)/2bd2  for a four-point beam (la)

% a 3PL/2bd 2  for a three-point beam (lb)

A critical review of simple beam theory assumptions will yield ranges of geom-
etry ratios by which the theory can be validly applied. These assumptions are
listed below, as well as their associated inferences in terms of an error analysis:

1. Transverse planes perpendicular to the longitudinal axis of the beam remain
plane after the beam is deflected.

2. The modulus of elasticity in tension is equal to the modulus of elasticity
in compression. Also, the beam mat3rial is isotropic and homogeneous.

3. The maximum deflection must be small compared to the beam depth.

4. The beam must deflect normally under elastic bending stresses but not
through any local collapse or twisting.

5. Stresses in the longitudinal direction are independent of lateral displace-
ments.

Each of the above assumptions is examined in detail, where possible, so that the
required rectangular beam geometry ratios can be determined as a function of the
associated errors.

Assumptions 1 and 2 together imply that stress and strain are proportional to
the distance from the neutral axis, and the stress does not exceed the prrportional
limit of the material. These assumptions disregard the effect of any shearing
resistance and make impossible the use of the flexure formula for curved beams of
large curvature.

Assumption 1 and the above Implication suggest that 'he bending stress is pro-
portional to the distance from the neutral axis to the outer surface of the beam.
This assumption is valid if flexure of the beam could be attained without applying
local forces to the beam. However, practical flexure test systems, such as those
shown in Figures la and 2a, which utilize rour-point and three-point beams, require
direct contact of the fixture to the specimen to apply loads and thus moments to the
specimens. At the point of contact there will be compressive stress in the beam
depth direction resulting in a local variation from linearity in the Linding stress. 3

I TIMOSHNNKO &, and GOODIER, J. N. Thuwry off F' dty. 2nd U., Mcjcaw4II ook Co.. Inc., Now Yoik, 1951.
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Secause this contribution to bending stress nonlinearity, referred to as wedging
stresso 4 is caused by external load application, it will be discussed further in
detail under the section entitled Errors From External Influences.

An error source that is internal to the bean arises because of the issumption
that the modulus of elasticity in tension is equal to that in compression. BS a 5 *

Chamlis 5 has derived in closed form the solution for the tensile bending stress wXen
ET 0 E€. After some manipulation of the appropriate formulass t"e tensile stress
due to bending is given by:

a (ab/2)[1 + (ET/Ec)1/21, (2)

for both the four-point and the three-point loaded beams. The resulting percent

error is given in Table I.

Table 1. ERROR WEN ET 0 EC

ET/EC 1I Er" ET/.C 11 Error

0.20 +36.2 1.025 -0.6
0.40 *22.5 1.010 -1.2
0.60 +12.7 1.075 -1.8
0.60 +5.6 1.10 -2.4
0.90 *9.6 1.15 -3.5
0.925 41.9 1.20 -4.6
0.950 41.3 1.30 -6.5
0.975 +0.6 1.40 -8.4
1.00 0 1.60 -11.7

1.80 -14.6
2.0 -17.2

Although the errors associated with neglecting to account for anisotropy and
nonhomogeneity of the test material are not considered i.ere. they are briefly men-
tioned in the following paragraphs so that the reader will be aware of such possi-
bilities.

If the beam is anisotropic, the bending stress formula is exactly the same as
the elementary theory except that the application of a bending moment can produce
twisting moment. According to Lekhnitskii.6 determining the accompanying shear
stress produced by bending a rod of rectangular cross section, having only one plane

of elastic sysmetry normal to the axis, is very complicated. (Composite and crystal

structures are excluded here as test materials.) If the degree of anisotropy for

ceramic material is slight, it say be permissible to assume that the error when

ignoring this effect on the fracture stress will also be small.

Nonhomogeneity of the test material infers variation of the elastic modulus.

It has been observed* that in plates of hot-pressed silicon nitride, the modulus of
elasticity at the surface is several percent different than that of the center. This

OPrlate discusson with E. W. Lenoe, MTL
4. TIMOSHENKO, S. Simensth ofMeelarl. 3rd Ed.. D. Van Nostnid Co.. Inc., N.Y., 1958, and Part II, 2nd Ea., D. Van

Nostrand Co., Inc., N.Y. 1941.
S. CHAMUS, C. C. Analysis of Threr..Point-Send Tesr for Materials with n.equaw Tensimo asd Ccomprvwhv Praimperl.u, NASA TN D7372,

March 1974.
6. LEKHNITSKII, &. G. T/emry of Elatilcty ofn 'A 4,isatirtpir Elastlr c Bil. lolden-Day Scrie in Mathenatical Physics. J. L. Brandstatter,

ed.. 1963. p. 204.

4



is also an area in whigh further analysis will be required to assess the error appli-
cable to four-point and three-point loAded beams when the modulus of-elasticity.
varies through the 1 cam thickness.

If a rectangular beam has initial curvature oc, the error can be determined
from an analysis pro" ided by TiL,ashenko. 4  The general bending stress ax in a curved
beam due to a pure moment is given by the following:

x= %(Mb/bdpc) (3)

where

(d/2pc) - (ec/Pc }
S= (3a)

(e /Pc[1 _ Cd/2pC)]

ec/Pc = [(d/pc) 2/12][1 + (d/p c)2/lS]. (3b)

Since the bending stress, according to simple beam theory, is ab = 6Mb/bd 2 , avd

putting ab in the same terms as (3) above, we have:

°b b =b(Mb/bdoc), (4)

where

=b z 6(pc/d). (4a)

The percent error e for a beam of rectangular cross section and of beam-to-depth
initial curvature p c/d resulting in a neutral axis shift of e c/0c is:

C= 10[(Qab - ac:) 1 . (5)

The resulting error for a beam of rectangular cross section bent by a pure moment as
obtained from (5) is given in Table 2 as a function of initial curvature. It is as-
sumed that an analogous analysis applied to a three-point loaded beam would produce
similar results.

The validity of the assumption that the strain is proportional to the distance
from the neutral axis and that stresses are independent of lateral displacements is
dependent upon the ratio of the beam width to its depth. Anticlastic curvature of
rectangular beams or plates with intermediate ratios of b/d can lead to erroneous
results using simple beam theory; see Timoshenko. 7 Of course, if the beam can be
considered infinite in wi.a:.h, like a plate, the correction of the bending stress is
simply8 1/(l - v2 ). The question arises as to what ratios of b/d are appropriate
for the application of simple beam theory. Ashwell 9 examiaed in detail the anti-
elastic curvature of rectangular beams and plates and provided the answer to this

7. TIMOSHENKO, S. Letter to the Editor. Mechanical Engineeing, Y. 45, no. 4, April 1923, p. 259-260.
8. B dRATrA, F. 1. When 6 aBnmaP ite? J. Amer, Cer. Soc.,v. 64,no.5, 1981,1 p -6. c715.
9. ASHWELL, D. G. The Anticlaotc Curvatre of Rectanpukr Beams ad Pates. J. toy., Aero. Soc., v. $4, 1950, p. 708715.



question. The pertinent formulas taken from Reference 9 are given in Appendix A.
These equations were applied to ceramic materials with Poisson's ratio v equal to
0.25 and the ratio of Young's modulus to fracture stress E/ab of 1000 to determine
the percent error* using simple beam theory as a function of b/d which is shown in
Table 3.

Table 2. ERROR CAUSED BY Table 3. ERROR CAUSED BY EFFECT
INITIAL BEAM CURVATURE OF ANTICLASTIC CURVATURE

Pc/d % Error E/lb U lxl03

1 35.1 bid % Error
2 16.7 1.0 0
3 10.9 15.0 0
4 8.4 20.0 0.1

10 3.2 30.0 0.6
15 2.2 40.0 1.5
20 1.7 50.0 2.6
40 0.8 100.0 4.7

100 0.3 500.0 5.9
t = 100 [(ab-'c)/ac] I000.0 6.1____ ___(-__ ___lO0__ ___-6.25w

Note: All errors are negative. Note: All errors are negative.

if the maximum deflection is not small compared to the beam depth, linear beam
theory cannot be employed without an error. West 1 0 examined large deflections of
three-point loaded beams, and from such results a definitive ratio of beam length-
to-depth can be determined for valid application of simple beam formulas. Since for
most brittle materials values of E/ab range from approximately 500 to 1000, the
former value was used to compute the percent error because it would yield the largest
error. Although the analysis was applied to a three-point loaded beam, the method
was extended to determine errors for four-point loaded beams as well. The results
of the calculations using the mentioned analysis 1 0 are presented in Table 4, which
gives errors for four-point and three-point loaded beams as a function of L/d.

Table 4. ERROR FOR BEAMS WITH LARGE
DEFLECTION

E/ob - 500

L/d Four-Point Three-Point

0 0 0
25 0.1 0.1
s0 0.6 0.4

100 1.4 1.0
150 2.5 1.8
200 4.1 2.9
250 7.0 4.9

Note: All errors are negative.

*Ashwell considered a beam bent by a constant moment analogous to the four-point beam loading case, which should represent a
conservative bound on b/d for the threpoint beam, as well.

10. WEST, D. C. FRexure "1ating offPltsc& Exp. Mach., v. 21, no. 2, July 1964.

6



It is implicit in the assumptions given in Reference 10 that the .'oads and
moments are applied to the beam in an ideal manner with no friction occurring between
the load application points and the beam. Ritter and Wilson"1 have determined a beam
length-to-depth limit based on the minimization of friction effects when large de-
flections occur. The friction effect considered is that which gives-rise to a moment
caused by the slope at the load application point. Not considered in the analysis1 1

are the effects of friction due to a moment acting out of the neutral plane of the
beam, lateral contraction or extension, and changes in moment arms due to contact
point tangency shift. These factors will be discussed later.

Returning to the results of Reference 11, an inequality for the four-point-
loaded beam which provides a limiit is given in the following:

(L/d - a/d)/(E/ab) < 0.3 (6)

to insure negligible nonlinear deflections and friction effects. The value of 0.3
was obtained from limiting the slope to less than 150 between the beam in the loaded
and unloaded positions at the outermost support point. If the minimum value of E/Cb
is chosen to be 500, then we determine that for a four-point loaded beam (6) becomes:

L/d - a/d < 150. (7)

It is noted from Table 4 that neglecting beam deflections resulted in greater
error in calculation of bending stress for the four-point loaded beam than for the
three-point loaded beam. For conservatism, therefore, it will be assumed that (7)
is applicable to the three-point loaded beam as well, with a/d = 0. Thus (7) becomes

L/d < 150. (8)

It appears that these limits are compatible with those values given in Table 4 such
that reasonable L/d ratios can be chosen that will result in small errors when mini-
mizing deflection.

One of the last requirements, no bdckling of the beam, is easily fulfilled for
ceramic materials with beam dimensions of practical test configurations. The
reader can readily verify this statement by referring to Timoshenko and Gere. 12

Accuracy, which is inferred in the above restrictions, is also dependent upon
the manner of load application, beam geometry, loading fixtures, and surface prepara-
tion. Although specimen size will not affect accuracy except for extremely small
geometries, it will alter the magnitude of the stress level at failure, and this
must also be considered. These subjects are discussed in the following paragraphs,
'nd guidelines for specimen geometry and minimization of errors are provided.

First to be considered, however, are the merits of a four-point beam loading
system as compared to the three-point beam loading system.

11. RITTER. J. E., and WILSON, W. R. D. Friction Effects In Four-Point Bending. ASLE Transactions, v. 18, no. 2, p. 130-134, presented at
the 29th Annual Meetins, April 28-May 2, 1974.

12. TIMOSHENKO, S., and GERE, J. M. Theory of Elastic Stability. McGraw-Hil Book Co., Inc., New York, 1961.
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FOUR-POINT AND THREE-POINT LOADING

The bending moment, from which the desired fracture stress is computed in an
idealized four-point beam loading system, as shown in Figure la, is constant, and
there are no horizontal or vertical shear stresses within the inner span. However,
the bending moment in an idealized three-point beam loading system, shown in Fig-
ure 2a, is linearly dependent upon the distance from the nearest support to the
fracture origin, and thus requires an additional distance measurement to determine
the fracture stress. Also, the shear stresses for the three-point beam loading sys-
tem are developed over the full span, thus deviating from the ideally sought uni-
axial stress state present in the four-point beam loading system.

Wedging stresses4 occur under all points of load application during flexure
testing of beams. The effect of the wedging stress occurring a•t the inner load
points of a four-point beam test is to cause a deviation from the idealized calcu-
lated constant stress at the two local regions. However, if the ratio of half the
distance between the outer span L and inner span 2, called a, to beam depth d is
great enough,* the stress reduction will not only be small but will decay rapidly,
and the stress predicted by simple beam theory will be developed, Yet, the maximum
stress computed by simple beam formula for the three-point beam system is never
attained. The actual maximum stress occurs at a short distance either side of the
center of the load application point, wh:ich can cause fracture at these sites,
rather than at the center, according to Rudnick et al. 1 3 This observation has also
been confirmed by Oh and Finnie, 14 where only for a material with no scatter in
strength will the fracture location of a three-point loaded beam be theoreticallyt
located at the center load point.

Brittle materials are affected by size. Compensation can be realized through
the use of statistical analysis offered by Weibull. 1 5 Although the four-point beam
system assures a simple stress state which is easier to analyze 15 than the more com-
plex biaxial stress state associated with the three-poin*t beam specimen, this will
be less of a consideration if the beam is designed properly. Nevertheless, the
three-point loaded beam system is preferred when investigating material or process
development, because of smaller specimen size, or when attempting to pinpoint
fracture origin location.t On the other hand, the four-point loaded beam is pre-
ferred when determination of strength for design purposes is desired, because the
center span is uniaxially stressed, i.e., no shear stresses exist. It is concluded
that each of these systems is suited for a particular application and each has dif-
ferent advantages and disadvantages.

Each of these beam systems will be subjected to external influences which will
affect the accuracy of the test results. These external influences, directly or
indirectly caused by the application of loads through the test fixtures, will lead
to either configuration constraints or errors.

*This requirement will be discussed subsequently.
In Reference 14, the authors considered only a statistical analysis and ignored wedging stress considerations.
Private communicatiou with R. W. Rice of N. R. L.

13. RUDNICK, H., MARSCHALL, C. W., DUCKWORTH, W. H., and ENRICK, R. R. The Evaluation and Interpretation of Mechanical Prop-
erties of Brittle Materials. AFME TR 67-316, April 1968.

14. OH, H. L, and FINNIE, I. On the Location of Fracture in Brittle Solids -I, Due to Static Loading. Int. J. of Fracture Mechanics, v. 6,
no. 3, September 1970, p. 287-300.

15. WEIBULL, W. Statistical Theory of Strength of Materials. Royal Swedish Institute for Engineering Res., Proc. no. 151, 1939, p. 1-45.

8



ERRORS FROM EXTERNAL INFLUENCES

The major influence on the accurate determination of flexure strength of a beam
in bending arises from the application of load through the fixtures to the specimen.
The idealizations indicated in Figures la and 2a are rarely met, and usually tests
are conducted using a convenient rigid loading head and support. member as depicted
in Figures lb and 2b. The constraints on either the loading fixture 'or the specimen
and/or errors resultirg from such fixture designs are many. Such constraints or
errors, which are discussed in turn, are caused by:

1. eccentric loading

2. span dimensions

3. beam twisting

4. friction

S. contact stresses

6. wedging stresses

7. beam overhang

8. contact point tangency shift

9. specimen preparation

10. load readout

11. specimen dimension measurement

Eccentric Loading

a. Four-Point Loaded Beams

When calculating bending stress by simple beam theory formula for four-point
loaded beams, it is usual to assume that the moment within the inner span I is con-
stant. However, if a loading head that can only translate is used, as idealized in
Figure lb, it is impossible to attain this idealized moment condition when

1 -X2;13,16 this is shown in Figure 1c. The ratio of a /Cb from Appendix B.

is:

Ox/Oh P1 ] x1 /a • (9)

I (P 2 + P 3)/? I

The loads and distances are also shown in Figure lc, and a is the value of a1 with
perfect load location. The error is magnified by the ratio of xl/a. (Of course, if
P1 0 P2 = P3 , which implies exact location of the points of load application, there
is no error.) In order to estimate the magnitude of such an error it was assumed in

16. HOAGLAND, L G. MARSCHALL, C. W., and DUCKWORTH, W. H. Reduction of Errors In Ceramic Bend Tests. J. Amer. Cer. Soc.,
v. 59, no. 5-6, May-June 1976, p. 189-192.
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Appendix B that the upper two load points in Figure lc were at a fixed distance
X2 - x i and were constrained to translate vertically during loading, and that
the loading head would be located such that x, 0 x 3 -'x 2 . This method of loading,
being the most convenient, is often adopted by many investigators, and therefore the
resulting error determination is not unrealisti'.

The analysis was accomplished by simply enforcing the condition that the dis-
placement at xl must be equal to the displacement at x 2 in the deflection squation.
This results in the following relationships between ax and ab in terms of the load
eccentricity ratio e/L (see Appendix B for details):

[(e/L + a/L)/(a/L)][l-(e/L + a/L) - X/L]{(Z/L)[2-(e/L + a/L)]-2[1-(e/L + a/L)] 2}

3(e/L + a/L)[1- Z/L -(e/L+ a/L)]-(1- I/L) 2  
(10)

where the parameter a defined as (L-Z)/2, e defined as (al-a); and t and L are shown
in Figure 1.

Most workers in the testing field utilize either a 1/3-point (a/L = 1/3 and
I/L = 1/3) or a 1/4-point (a/L = 1/4 and XlL = 1/2) loading. Thus by substitution of
these parameters into Equation 10, we obtain:

[3(e/L)+1](1/3 - e/L)[1/3(S/3 - e/L)-2(2/3 - e/L) 2 ] (11)

l [3(e/L)+1](1/3 - e/L) - 4/9

[4(e/L)+l](1/4 - e/L)[1/2(7/4 - e/L)-2(3/4 - e/L) 2 ]

.x/ab)Z/L=l [3(e/L) + 3/4](1/4 - e/L) - 1/4

The reader is cautioned that for given values of L/L there exists a limit on
e/L in (10), (11), and (12); that is, if a1 is such that either P2 or P3 = 0, the
test system changes from four-point to an eccentrip, three-point loading (see
Appendix B), and the above equations become invalid.

The error, defined as [(ab - a )/axllOO, was determined from (11) and (12) for
the 1/3-point and 1/4-point loaded teams and is shown in Tables 5 and 6 as a function
of e/L. Only negative values of e/L were considered in (11) and (12) because when
e/L < 0, , > b. A negative value of e/L corresponds to the inner load bearing
which is offset closer to the outer load bearing (a 1 < a). An error of similar
magnitude, but larger and of opposite sign, exists at the other inner load bearing,
which is why Tables 5 and 6 show + values. Tables 5 and 6 show that for correspond-
ing e/L, when al/L 0 a21L, the 1/3-point loading system results in lesser error than
the 1/4-point loading system. Also, in accordance with the above discussion, e/L
in Tables S and 6 is limited to a range of +0.0443 and +0.0465. The errors indicated
in these tables can be minimized by designing the loading fixture so that the inner
and outer spans are independently fixed.. Also. the inner span should be designed
with accurate location adjustment and allowed to pivot as recommended by Hoagland
et al. 1 6
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Table 5. ERROR DUE TO ECCENTRIC LORD APPLICATION Table 6. ERRORDUETO ECCENTRIC LOAD APPLICATION
FOR A 1/3-FOUR-POINT LOAPED. BEM FOR EITHER A. FOR A 1/4-FOUR-POINT LOADED REAMi FOR EITHER A

NO"-PIVOTING OR PIVOTING LO/ING HEAD 9O0-PIVOTING OR AFPZVOUIMA LOAPING 'HEAD

When &L - 1/3 and al/L & a2/L When I/L -1/2'and a1/L 1t al/L

NON-PIVOTING PIVOTING NON-PIVOTING PIVOTING
e/L ±(al/L - 1/3) % S Error + I Error e/L - ±+aI/L - 1/4) + %. Error + % Error

0.0 0.0 0.0 0.0- 0.0 0.0
0.0010 0.7 0.1 0100.0 1.0 0.2
0.0019 1.3 0.2 0.0020 2.1, 0.4
0.0038 2.6 0.4 0.0040 3.8 0.8
0.0057 3.8 0.6 0.0080 7.1 1.5.
0.0076 4.9 0.7 0.0120 10.0 2.2
0.0095 6.0 0.9 0.0160 12.6 2.9
0.0114 7.0 1.1 0.0200 14.7 3.6
0.0133 8.1 1.2 0.0240 16.6 4.2
0.0333 16.1 2.6 0.0280 18.3 4.7
0.0433 18.7 3.1 0.0320 19.8 5.3
0.0443 18.9 3.2 0.0340 20.8 5.6

0.0400 21.8 6.3
0.0465 22.9 7.0

Many flexure fixtures do permit the loading head to translate and pivot. The
eccentric loading error in this instance will be due to the actual moment being

different from the assumed moment. If the beam deflection is small, the angular
rotation of the loading head can be ignored and the maximum bending stress can be
determined utilizing force and moment equilibrium:,

ax 2e e 2e 2  (13)

a b L a aL

The maximum stress will exist under the inner load bearing which is offset to
give a larger moment arm (a). A similar error (for e/L < 0.01), but larger and of

opposite sign, will exist at the opposite inner load bearing. Substituting for
either 1/3 or 1/4-point loading:

e 6e2

(,x)/L-/4 L L2 (14a)

+ 2e 8e 2  (14b)(cb9/L=114 =1+L ,L21b)

The latLer expression was also derived by Jayatilaka. 17 These errors at the

point of maximum stress are also given in Tables S and 6 for comparison. It is

evident that a translating and pivoting loading head is preferred to a rigid loading

head because the errors are appreciably less. This finding 'is consistent with

recommendations of Hoagland et al. 1 6

17. JAYATILAKA, A. DeS. Fractur of Enwfneim Brittle Motedk,. Applied Science Publishers, LTD, London, 1979, p. 187.
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b. Three-Point Loaded Beams

The ratio of ax to ob is:

b 12(15)

The percent error as a function of e/L is given in Table 7. Notice that the percent
errors in Table 7 are always positive, and when the load application point is mis-
placed, such errors are much less than those of equivalent e/L values shown ii-i
Tables S and 6 for the four-point loaded beams. Notice also that when +e/L - 0.500M
the error is infinite, i.e., the three-point loading model is no longer-valid.

Table 7. ERROR DUE TO ECCENTRIC LOAD
APPLICATION FOR A THREE-POINT

LOADED BEAM
When &l/L 0 12/1L 111/2

e/LL. 1/2 - al/L

te/L % Error

0 0
0.025 0.25
0.050 1.0
0.075 2.3
0.100 4.2
0.150 9.9
0.200 19.0
0.250 33.3
0.300 56.3
0.400 177.8
0.450 426.3
0.500

Note: All errors are positive.

Span Dimensions

a. Four-Point Loaded Beams

An additional mislocation error may exist if the inner bearing span (z) or the
outer bearing span (L) are not their prescribed values, even if they are properly
centered with respect to each other. This will alter the moment arm (a). Assuming
the inner span is actually t + es and the outer span is L - es, then the ratio of
a to ab is:x b

ax [2es(L -9.)] (16)
ab

where e is the error of the inner and outer span dimensions. A similar error
(for e < 0.01), but of opposite sign exists if the inner span is I - e and the
outer hpan-is L + e . Errors are tabulated in Table 8 for the 1/3 and 1/-point
loaded beams. The largest error magnitude, occurring when the outer span is
L - es, is reported in these tables.

12



Table S. ERROR DUE TO MROM SANS

±1 Error

+s/L 1/3-Four-Point 1/4-Four-Point Thre•-Point

0 0 0 0
0.001 0.3 0.4 0.1
0.002 0.6 0.8 0.2
O.OOS 1.5 2.0 0.5
0.010 •3.1 4.2 1.0
0.015 4.7 6.4 1.5
0,020 6.4 8.7 2.0
0.025 8.1 11.1 246
0.00 17.6 25.0 5.3

Note: All arrors are either positive or negative.

b. Three-Point Loaded Beams

A simple analysis shows that if the support span is actually L - es, then:

a x L-e (17)

ab L

The error in determining the stress is given in Table 8. If the support span
is L+e , a similar error occurs but it is slightly less and of opposite sign. A
Comparison of Equations 16 and 17 shows that the four-point configuration amplifies
the span error, whereas the error in computing the stress for a three-point beam is
nearly the sane as the sp=:n error.

Beam Twisting

A net torque can result from line loads being nonuniform or nonparallel between
pairs of load contact points or if the cross section of the specimen is skewed ovr
its length. 1 3 , 16

Such a skewed condition is shown schew.ica1ly in Figure 3 for a four-point
bending specimen. The error due to twisting has been estimated for plane-strain
and plane stress conditions by examining the maxima principal stress due to beading
and torsion and comparing it to the bending stress. 16 "Bottoming" of the specimen
on the fixtuze was not considered. Bottoming occurs when the bearing.rollers contact
the specimen across its full width. For the sake of 'ompleteness, bottoming is con-
sidered in the analysis given in Appendix C. The maximu= principal stress, assuming
a plane strain condition, is derived in Reference 1. The plane strain criterion
leads to slightly higher error estimates, but the plane stress criterion is more
appropriate. The plain stress solution is also given in Refekence.16J but the
analysis has been extended in this report to incorporate the case where the specimen
bottoms on the fixture.

The maxima principal stress for either a skewed four-point or three-point berM
in bending, considering a plane stress condition, is given by:

aonax a b/2({1 + (1/3k2 )[(nb/1') 2 + 9k 2 2]}1/2 (18a)
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where ob is the apparent bend strength and 1' is either equal to "a" for four-point
bending or equal to L/2 for three-point bending. Also:

n-[ [3k•e/~b)/(l + v)][(d/L1 r)#s+ (d/t')F] (-)Cb)

where for Case I: n a 1, failure occurs prior to bottoming of the specimen in the
loading fixture, and for Case II: n < 1, failure occurs after bottoming.

z p P

P P SLT Ip

(a) Side View (b) End View of Specimen.
The applied loads cGntact
the specimen edges due to
the twist.

Bearing

(c) End View of Fixture Showing #F9 the Fixture Twist
Anglo Between a Pair of Contact and Load Bearings

Figure 3. Twisting of a four-polnt beam spedmen.

The factors k, anJ k2 , obtained from Reference 3 and given in Table 9, are
numerical values associated with the torsional stress component which are dependent
on the ratio of b/d. The measured angle of twist (or skew angle) along the total
length LT of th. specimen is # (see Figure 3c), and along the Zixture from one sup-
port point to the adjacent 1oad point is OF.

The maximum principal stress as given by (18a) can be utilized to determine the
percent error for various ratios of n, Vt/b, and b/d. This was accomplished and is
shown in Table 10. Notice that the range of n varies from 0.20 to 1.00. It is
expected that if bnttoming d&s not occur prior to fracture because of an excessive
twist angle, the maximum ratio of n that can be attained is 1.0 and thus the tables
do not accommodate n > 1.0.
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Table 9. kj AO ki

b/d kI kj
1.0 0.1406 0.208
1.2 0.166 0.219
1.5 0.196 0.231
2.0 0.229 O.2
2.5 0.249 0. 26
5.0 0.291 0.291

10.0 0.311 0.312
0.333 0.333

Table 10. ERROR DUE TO BEAN TWISTIMN PLANE JIM ASSUIPTION*

* 0.25

b/d

il/b 1.0 1.2 I.S 2.0 2.5 5.0

n - 0.20 1.0 2.44 2.22 2.00 1.77 1.62 1.27
2.0 0.63 0.57 0.52 0.46 0.42 0.32
2.5 C.41 0.37 0.33 0.29 0.27 0.21
5.0 0.10 0.09 0.06 0.07 0.07 0.06

10.0 0.03 0.02 0.02 0.02 0.02 0.01
0 0 0 0 0 0

n - 0.40 1.0 8.57 7.87 7.18 6.44 5.93 4.75
2.0 2.44 2.22 2.00 1.77 1.62 1.27
2.5 1.59 1.44 1.30 1.15 1.05 0.82
5.0 0.41 0.37 0.33 0.29 0.27 0.21

10.0 0.10 0.09 0.08 0.07 0.07 0.05
a 0 0 0 0 0 0

n • 0.60 1.0 16.20 15.05 13.09 12.63 11.74 9.61
2.0 5.19 4.73 4.29 3.82 3.51 2.78
2.5 3.44 3.13 2.83 2.52 2.30 1.82
5.0 0.91 0.82 0.74 0.65 0.60 0.47

10.0 0.23 0.21 0.19 0.16 0.15 0.12
a 0 0 0 0 0 0

n - 0.80 1.0 23.81 22.36 20.87 19.20 18.01 15.09
2.0 8.57 7.87 7.18 6.44 5.93 4.75
2.5 5.82 5.32 4.83 4.31 3.95 3.14
5.0 1.59 1.44 1.30 1.15 1.05 0.82

10.0 0.41 0.37 0o33 0.29 0.27 0.21
0 0 0 0 0 0

n - 1.0 1.0 30.74 29.12 27.43 25.50 24.11 20.61
2.0 12.32 11.38 10.44 9.42 8.72 7.06
2.5 8.57 7.87 7.18 6.44 S.1) 4.75
5.0 2.44 2.22 2.00 1.77 1.62 1.27

10.0 0.63 0.57 0.52 0.46 0.42 0.32
- 0 0 0 0 0 0

Note: All errors are negative.
*An error table based upon plain strain conditions is in Referece 1.
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Friction

It has already heen shown in Table 4, for the two bean systems considered, that
the error due to deflection will be negligible if L/d < 25., It appears that this
limit is well •bithin an attainable realistic geometry ratio. Therefore, the fric-
tion effect at the load and support points will be minimized with respect to large
deflections. This also implies that there will be no effect from friction on the
contact tangency shift. (These factors will be discussed subsequently.) However,
friction will cause a moment acting out of the plane of the beam that can not be
ignored. This factor is considered in the following.

When determining bend strength by simple beam theory, it is usual to assume that
the supports and load points are frictionless, whereas in fact they are not. The
presence of friction in flexure tests with fixed load and support points gives rise
to couples at such locations as well as axial forces at the neutral axis of the beam.
The net axial force is relatively small and therefore is ignored here. However, if
the moment is not corrected to account for the couple in the determination of flexure
stress, an error will result. Error equations adapted from the results* available
in the literature16 "19 are given below for the four-point and three-point loading
systems:

Z - 100(ad' (19)

and

V- o 100(/ (20)

Such errors as defined by the above equations can be significaIt, according to
References 16, 19 and 20. Newnham1 9 and Weil 2 0 reported that the experimental dif-
ference in failure stress using rigid knife edges as compared to roller-type contact
points was as high as 12% for silicon nitride and 13% for graphite.

Contact Stresses

Loads on bend specimens applied through knife edges or small-diameter rollers
result in high stresses under these line loads. High compressive contact stresses
can result and cause local crushing. (Also, shear stress near the locality of the
load point can be several times higher than that predicted by beam theory.)

Reference 4 gives equations for determining the contact pressure between a
cylinder (or roller) and a flat surface (see Figure 4) as a function of the applied
load, modulus of each material, and the roller radius. If it can be assumed that
the two -saterials are identical and that the allowable bearing pressure or contact
pressure can be as high as twice the bend strength of the material, then limits on
the roller radius for both loading systems will result. For example, from Reference
4 we have:

*Bsmm width coMUasat occurs aso because of friction trsnvene to the beMs on axI s I HOwS, this effect (see NOWnhmM19 ) is
asS &ad thus not coaddised bes

18. DUCKWORTh, W. K. et . Mechan•qiJPoperty Taosnn CtmmkAMdlU& WADC TR 52-67, Mach 1952. p. 67-70.
19. NEWNHAM L. C Swanth Tats Jfr 5 :leMwMsk Proc. of the Buitish Car. Sop., no. 25, May 1975, p. 281-293.
20. WEILL N. A. Studhs of A5t*1 SDAw•k of CesWpe M3•m.t ASD TR 61428. Part ii, Apuid 1962, p. 38-42.
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Pax Oa .59PE/2boi (21)

where p is the maximum contact pressure. (Note that the roller radius can be
either l•Tor P2.) However, we shall assume that p_ 2 @ia. Also for four-point
loading, aba 6Pa/bd2. and for three-point loadingMb" (3/2)PL/bd 2 . Substituting
of ab into (17) and solving for ol/d we obtain

pj/d :, 7.2S d/a for the four-point loaded beam, and (22a)

Pi/d > 29.0 d/L for the three-point loaded beam, (22b)

where it was assumed that E/O a 1000. Of course, if the specimen and bearing are
made of different materials, knd if E/ri is not 1000, then further calculations are
required to ensure that the ceramic doekn't locally crush or fracture, or that the
bearing does not permanently flatten.

P

L

P P
Figun 4. Contet point tanaec shift.

"h hI h1"i•

Wedging Stresses

Localized contact at the load bearings can cause a more subtle problem, which
is referred to as wedging stresses. The effect of the wedging stress is to provide
a substantial tensile stress contribution at the compressive side of the bem adjai.
cent to the load points. A net tensile stress can not be created if d/21' 1 1,
according to Reference 16. More importantly, a tensile stress is added to that
already present due to beam bending at the tensile side of the beam, thereby causing
a deviation from the assumed stress calculated by simple beam theory.
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This problem is generally treated in Reference 3 and particular results from
von Kr•mn and Seewald 2 1 for a similar situation are used to estimate this error.
An analysis for this error is given in Appendix D. The resulting error determina-
tions for four- and three-point loaded beams are given in Table 11. In the calcula-
tion oi the errors, which are a function of a/d or L/d, as well as x'/d, the com-
puted %b corresponds to the failure site location (x'/d).

Table 11. ERROR WUE TO WEDGING

xi Idx'/d, ..

Loading 0 0.125 0.25 0.375 O.S0 0.7S 1.0 1.50

a. Four-point.

20 4.7 -0. -2.8 -2.1 -1.4 -0.7 -0.3 t
1.5 +3.1 -0.3 -1.0 -1.4 -0.5 -0.5 -0.2 0
2.0 +2.3 -0.2 -1.4 -1.1 -0.7 -0.4 -0.1 0
3.0 +1.. -0.2 -1.0 -0.7 -0.3 -0.2 -0.1 0
4.0 +1.1 -0.1 -0.7 -0.4 -0.3 -0.2 -0.1 0S.0 +0.9 -0.1 -0.6 -0.4 -0.3 -0.1 0 0
6.0 +0.8 -0.1 -0.4 -0.4 -0.2 -0.1- 0 0
8.0 +0.6 0 -0.4 -0.3 -0.2 -0.1 0 0

10.0 +0.4 0 -0.3 -0.2 -0.1 0 0
15.0 +0.3 0 -0.2 -0.1 -0.1 0 0 0
20.0 +0.2 0 -0.1 -0.1 -0.1 0 0 040.0 +0.1 0 -0.1 -0.1 0 0 0 0
60.0 +0.1 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0

b. Three-point

r. +21.6 -2.4 -18.8 -25.4 -0.8 t t
1.5 +13.4 -0.4 -10.4 -10.2 -10.1 - t t
2.0 +2.7 -1.0 -7.2 -6.4 -S.3 -0.4 -t 0
3.0 +6.3 -0.7 -4.4 -3.7 -2.7 -I .g -1.3 t
4.0 +4.7 -0.5 -3.2 -2.6 -1.8 -1.2 -0.6 -0.1

1.0 +3.7 -0.4 -2.5 -2.0 -1.4 -0.8 -0.4 06.0 +3.1 -0.3 -4.1 -1.6 -1.1 -0.6 -0.3 0
8.0 +2.3 -0.2 -1 .5 -1.2 -0.8 -0.4 -0.2 0

10.0 +1.8 -0.2 -1.2 -0.9 -0.6 -0.3 -0.2 0
1S.0 +1.2 -0.1 -0.8 -0.6 -0.4 -0.2 -0.1 0
20.0 +0.9 -0.1 -0.6 -0.4 -0.3 -0.2 -0.1 0
40.0 +0.4 0 -0.3 -0.2 -0.1 -0.1 0 0
60.0 +0.3 0 -0.2 -0.1 -0.1 -0.1 0 0

0 0 0 0 0 0 0 0

ix s the distance on either side of the load contact point where failure occurs.

tlocation is at or beyond outer span limit.

Beam Overhang

The overhangs of the beam mast be great enough so that the local stresses at
the bean support points are not amplified due to bean-end effects. These stresses
are dampened out within a distance equal to one beam depth. 2 1 Thus, by allowing

LT > L + 2d (23)

beam-end effects are avoided.

21. VON KA1mAN, T., and SEEWALD, F. ANm"dl Asmdynm, Inst. Teuh. Hocdwhs, 1946. P 256

18



Contact Point Tangency Shift

Significant changes in span length can occur in both four-point and .three-point

loading systems if contact radii of support and load points.are large compared to
beam depth. The shift in point of tangency, as shown by h1 and h2 if Fi.gure 4, is a
function of the contact radii, specimen thickness, and the ratio of the modulus of
elasticity to the bend strength. For materials that behave elastically, such as
those considered here, the change in tangency point and thus the error arising be-
cause of the change in moment arm from the ideal can be predicted mathematically
for linear systems. This is accomplished and is presented in Appendix E. The
approach was patterned after Westwater 2 2 who corrected for span shortening but
ignored friction at the support points of a three-point loaded beam.*

In Appendix E the formulas are derived for a four-point loaded beam and then
reduced to the special case of a three-point loaded beam. These results are put in
terms of error functions assuming the simple beam theory is applied without correct-
ing for span shortening, as in the case of the lower support, and span lengthening
between the upper loading points shown in Figure 4.

The errors are determined for four-point loaded beams of 1/3 and 1/4 loading
points as a function of pl/d and p2 /d, and the three-point loaded beam as a function
of pl/d only. These errors are given in Table 12, where it was as~umed that
E/a = 1000.

Table 12. % ERROR DUE TO TANGENCY POINT SHIFT

E/Ob = 1 X 10'

P2/d

Loading PI/d 1.0 2.0 5.0 10.0

a. Four-point, 1.0 0.3 0.4 0.7 1.2
alL - 1/3 2.0 0.5 0.6 0.9 1.4

4.1 0.9 1.0 1.3 1.8
6.1 1.3 1.4 1.7 2.3
8.2 1.7 1.8 2.1 2.7

10.3 2.1 2.2 2.6 3.1

b. Four-point, 0.67 0.4 0.6 1.2 2.2
a/L - 1/4 1.35 0.6 0.8 1.4 2.5

2.7 1.0 1.2 1.8 2.9
4.1 1.4 1.6 2.2 3.3
5.5 1.8 2.0 2.6 3.7
6.9 2.2 2.4 3.1 4.1

c. Three-point, 1.0 0.1
a/L = 1/2 2.0 0.2

4.0 0.4 Regardless of p2/d value
6.0 0.6
8.0 0.8

10.0 1.0

Note: All errors are positive.

MWetwater also determined an approxinate relationship for the horizontal load arising because of tangency shift. However, for
beam of anull defection, the error is nefIgls.

22. WESTWATEP, J. W. Flexure restb of PfalcMatedahls. Proc. ASTM, v. 49, 1949.
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Specimen Preparation

The flexure strength of each brittle material is not only supersensitive to the
final surface finish because the maximum tensile stress occurs at the beam surface,
but is also highly sensitive to priur finish history. For this reason it is impos-
sible to specify an optimum surface finish procedure for all brittle materials, so
that failure will be due to inherent flaws related to the material or material proc-
essing, rather than an imposed defect resulting from the finish process. Indeed, the
designer or materials developer may not be able to specify a particular finish pro-
cedure. Therefore, rather than attempt to dictate surface finish requirements, it is
suggested that each set of reported test data results be accompanied by surface
finish history and/or material process history, whichever is applicable.

There are, however, several specific recommendations related to surface finish-
ing procedures that can be presented. Corner flaws resulting from chipping or crack-
ing during the grinding operation are sources of low-strength failure. Rounding or
beveling of the corner as depicted in Figure 5 appears to reduce premature failure. 2 3

Since a chamfer will double the number of edges, thus doubling the source of flaw
locations, rounding is preferred. 2 4 Also, it is important to grind the edges and
flat surfaces 24 by a motion parallel to, rather than perpendicular to, the specimen
length. It is further indicated2 3 that finishing of the corner should be comparable
in all aspects to that applied to the beam surfaces.

r 

1
450

Figure 5. Beam cross section.

K*bb
(a) Rectangle with (b) Rectangle with
Rounded Corners Chamfered Corners

If the corner radii or chamfer is small, the errcr in ignoring the change in
moment of inertia will be negligible. The limiting ratio of corner radii or 450
chamfer dimension to beam depth can be determined from the error analysis due to
neglecttig the change in moment of inertia given in Appendix F. This error in
determining flexure stress, when neglecting corner radii or 450 chamfer, is given
in Table 13.

23. RICE, R.W. Mach:'.in ,,f Ceramics. Proc. of the Second Army Materials Technology Conference -Ceramics for High Performance
Applications, J. J. Burke, A. E. Gorum, and R. N. Katz, ed., Brook Hill Publishing Company, Chestnut Hill, Massachusetts, 1974.

24. RICE, R. W. The Effect of Grinding Direction on the Strength of Ceramics. The Science of Ceramics Machining and Surface Finishing,
S. J. Scheider and R. W. Rice, ed., NrS Special Publication 348, Washington, DC, Government Printing Office (SD Catalog No. 13.10:348),
1972, p. 365-376.
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Table 13. % ERROR IN DETERMINING FLEXURE STRESS

a. When neglecting b/d
.corner radii .0

rid 1.0 240 4.0

0 0 0 0
0.02 0.1 0.1 0
0.04 0.4 0.2 0.1
0.06 0.9 0.4 0.2
0.08 1.5 0.8 0.4
0.10 2.4 1.2 0.6
0.15 5.1 2.5 1.3
0.20 8.6 4.3 2.2

b. When neglecting c/d 1.0 2.0 4.0
450 chamfer 0 0 0 0

0.01 0.1 0.1 0.1
0.02 0.2 0.1 0.1
0.03 0.5 0.3 0.1
0.04 0.9 0.5 0.2
0.05 1.4 0.7 0.4
0.06 2.0 1.0 0.5
0.08 3.4 1.7 0.9
0.10 5.2 2.6 1.3

Note: All errors are negative.

Load Readout

It is readily apparent that an error in the break load P is identically carried
over as an error in the stress ab.

Specimen Dimension Measurement

It is further evident that an error in measuring the specimen dimension can also
lead to an error in stress. It is recommended that the cross section dimensions b
and d be measured at the point of failure (to preclude specimen taper effects). Con-
sidering the true specimen dimension to be in error by em, then from Equations la or
lb:

(b bd2  m+ em)(d + em)Z for three- or four-point flexure. (24)

If e is small relative to b or d:m

[(e)+ ( m](25)

Equation 25 shows that, if the measurement error is expressed as em/b or em/d, the
error in stress is magnified. For example, if d = b, then a 1% error in specimen
measurement becomes a 3% error in stress.
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RECOMMENDATIONS FOR FLEXURE TESTING

It is beyond the scope of this report to analytically determine the intersec-
tion of errors to arrive at a total stress error. Nevertheless, a range of practi-
cal geometry ratios and error tolerances can be specified so that a simple additive
stress error is a few percent at most. The recommendations are summarized in
Table 14 and are discussed below.

Several of the error sources are negligible for most common test configurations.
These include initial beam curvature, anticlastic curvature, beam overhand and large
deflection sources. The error due to nonhomogeneity are largely unknown at th-s time.

Many of the errors are independent of the test configuration but shovld not be
overlooked. Micrometers are readily available that are accurate to within 0.0025 mm
(0.0001"), and these should be used to keep specimen dimension measurement errors to
a few tenths of a percent. Many conventional universal testing machines can easily
read break load to within 0.5%. Corner chamfers should not be casually applied to
specimens, particularly ones with small cross sections, since the error can be sig-
nificant. The analysis in this report assumes the chamfers were identical. If they
are not, or if only two chamfers are used, a further error can result due to a shift
in the position of the specimen's neutral axis.

Some of the more important error sources do depend upon the fixture configura-
tion. The 1/3-four-point mode has somewhat less error than the 1/4-four-point mode
for the cases of wrong span and contact tangency shift sources. JA greater differ-
ence exists for the eccentric loading source of error. Special care should be taken
to minimize wrong spans or eccentric loading error sources in four-point flexure
since an error in such fixture positioning is magnified as an error of stress.
Three-point loading is much less sensitive to load bearing position error sources
than four-point loading. On the other hand, a three-point loaded beam is adversely
affected by the presence of wedging stresses at the point of maximum stress. These
wedging stresses decay rapidly with distance away from the load bearings and will
have considerably less influence on four-point testing. The bearing friction error
can be of large magnitude for either three- or four-point loading, and it is strong-
ly recommended that the load bearings be mounted such that they are free to rotate.
Twisting error, due to lack of parallelism of fixture bearings or specimen surfaces,
is harder tc predict, because the error is dependent upon many geometry terms as
well as the specimen stiffness. Parallelism requirements are more important for
four-point loading than three-point. For most geometries and materials, parallelism
limits of better than 10 in the specimen and also the fixtures are needed to keep
the error within I percent.

There are two conflicting requirements regarding contact radius at the loading
and support points: the first is that radii must be great enough so that contact or
bearing pressure does not cause local failure of the beam; the second is that the
contact radii be small enough so that the error due to contact point tangency shift
is not great.

Many of the error analyses in this report assumed the ratio of elastic modulus
to bend strength (E/a) was 1000. Values could, in fact, range from 100 to 2500. In
general, the larger E/c, the larger will be the twisting error and load bearing con-
tact stress, but the lesser will be the contact tangency shift and large deflection
errors.
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Table 14. ERROR SOURCES AND RECOMMENDATIONS

Error Source Recommendations Error
M (%)

Et , E ; Nonhomogeneity & Anisotropy (Table 1) Error depends upon material and
on a fabrication process.

Initial Seam Curvature (Table 2) Pc/d 100 <-0.3%

Antialastic Curvature (Table 3) b/d TS5 0

Four-Point a/d < 12.5 <o0.1
Large Deflection (Table 4)

Three-Point L/d c 25 <-0.1

Non-Pivoting Hea:l e/L < 0.001 <+0.7
1/3 Four-Point Pivoting 'Head e/' < 0.002 -0.2

Eccentric Load (Tables 57) Non-Pivoting Head e/L < 0.001 <+1.0
1/4 Four-Point Pivoting Head e/L < 0.002 <+0.4

Three-Point e/L < 0.025 <+0.25

1/3 Four-Point es/L < 0.001 <+0.3

Wrong Span (Table 8) 1/4 Four-Point es/L < 0.001 <+0.4

Three-Point es/L < 0.005 <+0.5

Beam Twisting (Table 10) Minimize es and ef << 10

Four-Point Roller bearings which are free
Bearing Friction (Eqs. 19,20) to roll.

Three-Point Roller bearings for outer supports.

Four-Point pt/d > 7.25 d/a
Contact Stress

Three-Point pi/d > 29.0 d/L

Four-Point a/d > 5.0 <40.9
Wedging Stress (Table 11) Three-Point L/d • 20 <+0.9

Beam Overhang LT > L - 2d

1/3 Four-Point Pi/d :i 2.0 1+0.5Contact Point

1/4 Four-Point Pi/d 1 1.5 1+0.7
Tangency Shift (Table 12)

Three-Point pi/d 1. 5 1+0.5
b/d 1.0O, c/d <_ 0.03 <-.

Corner Chamfer (Table 13)

'b/d - 2.0, c/d - 0.04 _-&0.5

b/d - 1.0. r/d j_ 0.04 1-0.4
Corner Radius (Table 13)________________________ b/d - 2.0, r/d <_ 0.06 <-.

Load Readout Measure p accurate to 0.5% <+O.5%

Specimen Dimension Measure em/d accurate to 0.1% <+0.3%
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STRENGTH AS A FUNCTION OF SPECIMEN DIMENSIONS AND SAMPLE SIZE

General

An additional issue is the question of how many specimens should be broken in a
test sequence. Furthermore; it is well known that the size of the specimen can
influence the measured strengths. In general, the larger the specimen, the weaker
it is likely to be. How can strength results generated with one specimen size be
compared to other sizesI? These two questions can be addressed by the well-known
Weibull analysis. 1 5

Many investigators have used the Weibull approach to relate strength levels of
various types of specimen configurations either on a stressed volume or surface area
basis. 2 5 The reader is cautioned that confirmation of such an analysis or lack
thereof may well depend on a number of factors including the test material. As
examples of such correlation and lack of it, Weibull statistical correlation was
justified by Davies 25 for reaction-bonded silicon nitride but inappropriate for
Lewis' work 6 in alumina fabricated by several processes.

A computer program for statistical evaluation of composite materials, applicable
to ceramic materials, is available in Reference 27. This program determines the
desirability of a particular probability density function in predicting fracture
strength of ranked empirical data. The candidate functions include normal, log
normal, and Weibull. Root mean square error results can be tabulated for each
functional comparison. The effects of several different statistical ranking schemes
can be readily listed in the computer output.

The data mean and standard deviations with corresponding levels of confidence
can be included in the printed results. The Weibull parameters, obtained from the
maximum likelihood method, and corresponding confidence intervals can be obtained
from this program.

Since a Weibull-type analysis is a plicable in many instances, resulting formu-
las for the simple two-parameter system39,28 to determine the risk of rupture for
the four-point and three-point loading systems, are presented below, for the sake of
completeness.

It is worth noting that Weibull analyses of strength data require, as input,
the idealized tensile stress acting upon a specimen, not the stress at the point of
fracture. 25 It is for this reason that strength values are not adjusted in four-
point loading for "out of inner span fractures" (which occasionally occur) or for
fracture away from the middle bearing in three-point.

Volume Sensitive Material

The Weibull two-parameter volume distribution function for the probability of
failure (F) of a uniaxially stressed component is: 1 5' 2 5

25. DAVIES, D. G. S. The StatiicalApproach to Ensjneerg•De.sin in Ceramics. Proc. Dr. Ceramics Soc., no. 22, 1973, p. 429-452.
26. LEWIS, D.. III. An Experimental Teat of Welbull Sd Theory. J. Amer. Cer. Soc., v. 59, no. 11-12, 1976, p. 507-510.
27. NEAL, D. M., and SPRIGIDIGLIOZZI, L An Efficent Method for Determining the 'A 'ad• 'B' Destin Allowables. ARO Report 83-2,

Proc. of the Twenty-Eighth Conference on the Design of Experiments in Army Research, Development and Testing, 1983.
28. DeSALVO, G. J. Theory and Structural Defin Applications of Welbull Statistics. Westinghouse Astronuclesr Laboratory, WANL-TME-

2688, 1970.
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F = 1 - exp ) dV (26)

where a is the tensile stress acting upon an element dV of the component, a is the
characteristic strength (a normalizing parameter which has units of stress ? volume
raised to l/M), M is the Weibull modulus, and V is the volume of the component. In
general, a is a function of location in the component. Equation (26) is often re-
written for flexure specimens in terms of ab and the equivalent volume VE (the vol-
ume of a tensile specimen) which, when subjected to the same stress ab, would have
the same probability of failure. 2 5

F = 1 - exp [. b ( ) M . (27)

The equivalent volume is a useful quantity since it permits comparison of the
mean strengths of two different sized components:*

- 2 - .(28)
02 V El

where a 1 and V are the strength and equivalent volume of one component, and a2 and
VE2 are for thilother.**

The effective volume of a rectangular beam in four-point flexure is:

VE = V ((M + I)) 1 - -4- (TM..)]2 (29)

where V is the specimen volume inside the outer span (V = bdL). This formulation
includes the material between the inner and outer bearings. For the case of
1/4-four-point bending:

VE= V [ :)2] (30a)

For the case of 1/3-point bending:

VE = V 6M + 3-] ) (30b)

V2 1~ 6(M + 1)2]

*or the strengths at the same probability of failure.
**Some assumptions are involved in the above analysis; the reader is directed to Reference 25 for details.
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and for a beam stressed in three-point bending:

V18nvf (30c)
12(M +l) 2 J

M can be determined by a number of different methods (see References 25, 28-30).
The accuracy by which M can be determined is discussed later under Weibull Parameter
Estitate and Sampl'e Size. Equation 30 shows that a larger volume of material is
effectively stressed in four-point as compared to three-point loading. It is for
this reason that four-point loading is generally preferred.

Surface Sensitive Material

The Weibull two-parameter surface distribution function for the probability of
failure of a uniaxially stressed component is: 1 5 , 2 5

F I - exp f M d . (31)

where the characteristic strength has units of (stress • area raised to l/M), M is
the Weibull modulus, and integration is performed over the specimen surface, S. If
surface flaws predominate, then the-effective surface SE can be used to compare
mean strengths* between two components:

"- 5E2I /M (32)
'F El,

Tht Tfective surface area for a four-point loaded beam is;

SE )2 btM + 1)2 + [2ab + dt](M + 1) + 2adi (33)

and for three-point it is:

Lb Ld (34)
E M + 1 (M + 1)2

Once again, a greater surface is exposed to high stress in four-point loading as
compared to three-point, which is why four-point is preferred.

*Or the atrengths at the same probability of failure.
29. McLEAN, A. F., and FISHER, E. A. BrittlA Mater-Ai Desman. th Mpemture Go Turbine. Ford Motor Company, Contract

DAAG46-71-CA0162, Interim Report, AMMRC CMR 77-20, August 1977.
30. PALUSZNY, A., and WIU, W. hPobbiitic Arpeek of Degnin with Cermica. Presented at the 22nd Annual Gas Turbine Confemce

of A.S.M.E., hdiladelphia, Pa., March 27-31, 1977.
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Welbull Parameter Estirmate and Sample Size

Often, the objective of flexural strength testing is not merely to estimate a
mean strength, but to estimate Weibull distribution parameters such as the Weibull
modulus M, or the characteristic strength, a . The following section discusses
requirements for numbers of specimens in order to obtain reasonable estimates for
these parameters.

Flexure tests on hot-pressed silicon nitride material reported by McLean and
Baker 3 1 show the effect of Weibull slope M for specific component reliability. The
strength requirement for a specific component reliability was decreased 16% by a
reported 20% increase in M from a nominal value of 10, and was increased 27% by a
20% decrease in the slope.

Different techniques will produce somewhat different results, according to
McLean and Fisher, 2 9 when estimating the Weibull parameters. Two statistical methods
had been used during preliminary analysis of hot-pressed silicon nitride material
strength data, and results indicated that the estimates of the characteristic value
a (or scale parameter) were very close while the Weibull slope estimates vary and
thus would yield considerable differences in the component strength requirement.

The following is quoted directly from Reference 29 (except to change reference
and figure numbers approprirte for this report) because it succinctly addresses the
answer to the question of proper sample size: "The exact confidence intervals for
the parameters are based on the distributions obtained by Monte Carlo methods presented
in Thoman et al. 32 It is not unexpected that the uncertainty in the estimation of a
parameter will increase as the sample size decreases. This uncertainty, however, has
rarely been quantified. The width of the confidence intervals for the parameters is
a measure of the uncertainty and aids in the selection of the sample size of a test.
Figures 6 and 7 are drawn from Reference 32 and show the 90% confidence bounds for
the Weibull slope and the characteristic value." (Figure 7 differs from that given
in Reference 29 in that two additional M values were computed and shown.) "The bounds
for the Weibull slope are a function of sample size only, while for the characteristic
value they are a function of both the sample size and the Weibull slope. As can be
seen from the graphs) the error or uncertainty in estimates from small sample sizes
is very large. Important judgements and significant analysis should not be based on
small samples. Sample sizes of at least 30 should be used for all but the most pre-
liminary investigations. An uncertainty of ±10% in Weibull slope requires more than
120 samples. This uncertainty is not peculiar to just ceramics, but is intrinsic to
the statistical analysis of data, whether that data be material strength or the life
of some electronic component. The choice of sample size depends on many factors in-
cluding the cost and timing of testing and the degree of conservation which is accept-
able, but erroneous judgements may be made and unacceptable designs pursued if the
sample sizes are too small."

31. McLEAN, A. F., and BAKER, R. R. Brittle Materiab Deuir, High Temperatwe Ga Tukrbine. Ford Motor Company, Contract
DAAG46-71-C-0162, Interim Report, AMMRC CTR 76-31, October 1976.

32. THOMAN, D. R., BAIN, L J., and ANTLE, C E. hIfuwwcea on tke Purmeten of Welbull Dklfbutfon. Technometrics, v. 11, p. 445-4M0.
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LOADING SPEED

It is well known that speed of loeding will often influence the failure stress
of structural ceramic beams. The source of the sensitivity is stress corrosion
phenomena, particularly in the presence of water or water vapor. In general, the
slower the speed of loading, the greater the opportunity for stress corrosion
ph•iomena to weaken the specimen. Thus, fast loading speeds are usually used in
strength tests.

Host universal testing machines used for flexure testing are constant displace-
ment rate machines, so it is convenient to specify strain rates. The strain rate
for a linearly elastic material is defined as:

; . Cb/E)/t, I(3S)

where t is the time of the applied load; but since the speed of loading is s - y/t,
then

where y is the deflection of the beam and s the constant speed of the testing
machine. This assumes that all of the machine's motion is transmitted to the spec-
imen (i.e., the machine is perfectly 'hard'). The deflection of the inner load
bearings of a four-point loaded beam is:

p 2 a
P = j• (3L - 4a) (37)

Substitution of y into Equation 36 and recognizing that ab = Pad/21 gives:

3Sd (8
a(3L - 4a) (38)

For a 1/4-four-point beam:

6dS (39)

For a 1/3-point beam:

27dS (40)
5L 2

Using the same approach as above, we obtain the strain rate for three-point beams:

S 6dS (41)

L2
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An alternative approach to designating the loading speed is the stressing rate:

a CE (42)

which is valid for the mase of a linearly elastic material. Equations 38 to 41-can
be substitute. into Equation 42 if stressing rates are specified.

Finally, if the time per test is the limiting concern, then the following is
applicable:

t. (43)

and Equations 38-42 can be used along with the projected bend strength to solve for
t.

CONCLUSIONS

A variety of sources can lead to errors in determining the flexure strength
when using simple beam theory equations. These sources include asumptions involv-
ing simple boea theory and external influences pertaining to the load application.
Providing that the beam is homogeneous and isotropic, and deflections are relatively
small, then the major sources of error are from external sources. In particular,
the most serious errors arise from load bearing friction, beam twisting, and load
bearing mislocation. Other errors, such as contact point tangency shift, wedging
stresses, neglecting corner chamfers, and load readout errors cannot be neglected
either. Table 14 lists all of the potential error sources identified in this report
and-makes specific recommendations for specimen and fixture geometries and toler-
ances. The bases for the recommendations are that they be practical, that they
limit the individual errors to approximately one half percent, and that the sum of
the errors be less than a few percent.

Requirements for a minima number of recommended specimens (30) are presented
in the context of the Weibull two-parameter analysis. This analysis is one of the
simplest possible, and the reader is cautioned that numerous assumptions are entailed
in its use. Even if a more complex function appears to have better applicability
than a Weibull analysis, the requirement for 30 or more specimens should likely re-
main valid.

For convenience, a brief discussion of converting strength of one size speci-
men to another is included. Again, since this analysis is based upon a Weibull two-
parameter approach, the reader is cautioned that numerous assumptions apply and that
more sophisticated analyses may have to be used.

A section on loading speed is also included for convenience to permit quick
assessment of optimum universal testing machine speeds.
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TABULATIONS OF ERRORS IN CALCULATING FLEXURE STRESS

Unless otherwise stated, the percent error is determined throughout the text as
Ob~~~~~ 6 ~/ 10 hr M/bd2 and a is more nearly the true bending

01a oa)/a 11001 whe.re.,,
stia Th a Neative error indicates the s~mple beam formulas la and lb under-estimate the true stress; a positive error is an overestimate.
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APPDIDX A. ANTICLASTIC CURVATURE

When a beau is bent by a aomet, it pxodtices a curature p aloag its longitu-
dinal axis; there is also curvature present in the transverse or lateral direc-
tion. This moment is dsfied by orthodox theory as

Nb - (EI/p)O (A-i)

where 0 is a parameter representing the effect of restraint of anticlastic curvature
after Ashwell. 9 Since

Ox a %bC/I a (BI/oI)YO

then

Ox a (€Y/P)O (A-2)

where y is the distance from the neutral axis.

The 0 for simple boam theory will equal 1.0 and if the beam width to depth is
great, i.e., b/d*+o, the boam can be considered as a plate so that 8+l/(l-vz). It
is worthwhile to know the interme diate values of 0 such that the effect of restraint
of anticlastic curvature on the error can be ascertained when assuming simple beam
theory (B - 1.0) is valid.

Ashwell9 has determined 0 as a function of Poisson's ratio, beam width,
depth, and neutral axis curvature by accounting for anticlastic curvature and
treating the structure as a boam on an elastic foundation. The function 0 and
related terms are repeated here in the following:

1 3 26 v+ ---- f(yb) - F(yb) (A-3)I-V 2 yb ybXl-vy

where

Y=V" d2p2

f(yb) = 2(B52 C2 )[sinh(yb) + sin(yb)]

* (B2-C2+28C) cosh(yb) sin(yb)

+ (B2-C2-2DC) si3h(yb) cos0(b)

+ 2 (B2 -C2 ) (yb),

F(yb) = (BeC) sinh(yb/2) cos(yb/2)

- (B-C) cosh(yb/2) sin(yb/2),

no beam oxam ba/pd o-.
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B • (sinh(yb/2) cot(tb/2)- cosh(lb/2) sine€b/2)\ and
/3(1-7) s inh(yb) + sin (b) /

C V sinh(Yb/2) cos(Xb/2) + cosh(yb/2) sin(ybfl). .

r3(Z-V2 )v sinh(yb) + sin(yb)

The calculations performed for Table 3 in the text were accomplished in the
following manner:

Since

yb = and p = (E/a)yo, then substituting into the above,Sd2 p2

allowing y = d/2, E/a = E/ab = 1 x 103, and v = 0.25 for ceramic materials, we have;

yb a 57.91S x 10-3 (b/d) (A-4)

By programning (A-3) and preacribing bid, but first allowing 8=1.0, then
iterating in the computer through (A-4), the relationihip between b/d and 8 was
obtained. Once this relationship is known, the percent error, defined as.
[(1-8)/B]100, as a function of b/d is realized. These errors are given in
Table 3 as a function of b/d with E/ab = 1000 and v = 0.25.

APPENDIX B. LOAD MISLOCATION ERROR, LOADING HEAD RIGIDLY ATTACHED

Four-Point Loading

Consider the usual flexure testing setup where the loading head is rigidly
attached to a testing machine, schematically shown in Figure lb and idealized in
Figure Ic. The upper loading head, where the inner span t is fixed, can only
translate in the vertical direction, and the lower support fixture, where the
outer span L is fixed, can be located with reference to the loading head. The
slope and deflection equations between points AB, BC, and CD are as follows:

fI (dyAB/dx) = (Plx2 /2) + c,)
(B-la)

E1 YAB 0 (P l x 3/6) + cIx + c21

E1 (dy Wx) (Pl-P 2 )(x 2 /2) + P2a 1x + c3 C Ce-lb)

El YBC a (PI-P 2 )(x 3/6) + (P2alx2 /2) + c3 x + cj-

and

El (dYcD/dx) - (PI-P 2 -P 3)(x 2 /2) + P2 a1 x + P3 (al+t) x + cS
(B-lc)

EI Y6CD (P1-P2 -P3) (x3/6) + (P2alx2/2) + P3 (a1 +L)(x2 /2) + c5x + csj
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where P1, P2 , P3, and 0'ii are the loads x and y are defined Cs shown in Figure 1,
B is the Young's modulus of the material, and I is the moment of inertia of the
cross section of the beam.

Through the use of-the various boundary conditions the constants are deter-
mined to.be:

S- -1/6 (P (L2-a ) + -(P2 /L) [(a 1 -L)S + (tea2)a22]1

C2 0

C3 a -1/6 {P1 (L2 -a 2
2) + (P 2 /L) [3a 1

2 L - (a 2 +L) 3 + (t+a2)ai2]1

C4 = P2 al 3/6

C5 -1/6 (P 1 L2 + (P2 /L) [a 1
3+3alL2 -L 3 ] + (P 3/L) [(al+t) 3 + 3(al+t) L2 -L 3 ].)

c6= P3 [(al+.t) 3/6] + (P2 a 1
3/6).

In order to determine the distribution of loading between the vertical loads
P1 , P2 , P3 , and P4 , the final condition of equal deflection must be enforced at
locations. B. and C (see Figure lb), which is

(Y'BC)xual w (YBC)x-a,+,.t

Enforcir•g the above condition in the second part of Equation B-lb results in

Pl/P2 =(,/L)2+ 't/L - (1-al/L) (2-,t/L-2aj/L)
(al/L)3 - (al/L÷+/L) 3 + {I - [l-(L/L)-a,/L] 1(X/L)

Utilizing force and moment equilibrium, a further relationship between all four
forces is obtained and given in the following:

(PI/P 2) (ajl1L) 4 (P 1/P 2 -1)L/L aPn/P + a/L" - "1
P4/P3 T and P'/ 2 ( B-3)

(P l /P 2) - + al/L 1 - al/L - I/L.

The ratio of the stress at x (ox) to the bending stress (0b) from Reference .16
or Equation 9 in the text, where it is assumed that al 0 a 2 , is:

[ 1 X1  (B-4)

~X'% L2;P3]

where a is the value ,at a 1 with perfect load location and x1 is defined
as shown in Figure 1c.

By manipulation of (B-2) and (B-3), the factor Pl /(P 2 + PS) in (B-4) can be put
into terms of al/L and £/L. This was accomplished and the results are 3hown in the
following equation:
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[(a, /L)(a/L)] (1 - a,/L - (/L)1[C/L) (2 - a1 /L)-2(1 - a1 /L) 2 ]ax/ab ,
3(a /L)(1 - /L- a/L) -7J1- /L) 2  ,B,,)

By defining the eccentricity of loading as e/L al/L - alL, Equation B-S becomes:

[CelL + a/L)/(a/L)][-(e/lL + alL)- +/L[2-Ce/L a/L)]-2[1-(e/L + a/L)] 2 )ox/ob =

3(e/L + a/L)[l - t /L- (e/L ' a/L)/-(1-./L)2

(B-6)

Calculations of ax/lb were obtained for LIL = 1/3 as well as LIL = 1/2, by
allowing e/L to take on negative values only in Equation B-6. Only negative valuos
were considered because beam failure will occur due to a realistically larger moment
than idealized when ignoring eccentricity. These error calculations, although-de-
termined by allowing e/L < 0 in Equation B-6, are indicated as ±e/L in Table S
for L/L = 1/3 and Table 6 for I/L = 1/2. This simply indicates that the location of the
maximum moment or stress is at x1= a, when e/L <0 and at xi= al + X when e/L > 0.

The reader is cautioned that for each value of Z/L there exists a set of limits on
(B-2), (B-3), and (B-S). That is, a, can be such that either P2 or PS can equal zero,
because (YBC)xfal ý (YBC)x'ma 1÷t and the system changes from four-point to an eccentric
three-point loading. The limiting values can be determined by allowing P2 f 0 in Equa-
tion B-2.

APPENDIX C. BEAM TWISTING

If line loads are nonuniform or nonparallel between pairs of load contacts,
or if the cross section of the specimen is skewed along its length, as shown in
Figure 3, a net torque will result. The addition of torque gives rise to a max-
imum principal stress due to bending and torsional stresses. 1 3 1!6 Failure assumed
to be caused only by bending stress will yield an error. Two cases are consi-
dered: Case I - Failure occurs prior to specimen realignment in the bend fixture
(bottoming), and Case II - Failure occurs at or after bottoming.

Case I

Recalling that the bending stress for a loaded beam is

ax = ab = 6Mb/bd 2  (C-l)

where Mb is the measured bending moment at failure; for a four-poini 'loaded beam
Mb u Pa, and for a three-point loaded beam Mb = PL/4.

The maximum shear stress due to torsion of a rectangular beam is 3

T xz U T b/k2bd2 (C-2)

where Tb is the torque and equal to Pb for four-1,oint bending and Pb/2 for three-.
point bending, and k2 is a numerical factor obtained from Reference 3 and is given
in Table 9. This peak shear stress occurs at the specimen surface at the midpoint
of the long edge (dimension b).
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Prior to bottoming, the notmal- stress is--

Son.-mp .(gf,2) (1-cos2e): + (/Icos2o) +. -f Sin2W, (C-3)

on a plane whose normal is in the xz plane and is inclined atvan angle 0 to the x
axis. Since we shall assume a plane strain condition, i.e., sc Z O, then

z 0 = Cl/.-)(az-• or a z - x " b.

since a = 0 at the free surface. From Equation C-3:

ai -Cb*L/2)[CXJV) , C-v)cos2e] + TXszin2e. I (C-4)

Now a is maximum whenn

tan2e* z 21x /(oa)
xz

but since

Z " VX

then

tan20* = 2xz /(l-v)ab (C-S)

where 8* is the angle of a plane inclined to the axis at which principal stress is
a maximum. Substitution of (C-1) and (C-2) into (C-S) for the condition prior to
bottoming gives:

tan2e* a (Tb/Mb)/[3(1-v)k2.I (C-6)

sin2G* a (Tb/14b)/[(Tb/Mb)2 + (3k 2 )2(l.-v)2]l/ 2, (C-7)

and
c - [3k2(1-v)]/[(Tb/M4b) 2 + (3k 2 )2(1-v)2]1/ 2 . (C-8)

cos20*a 321V C8

from Equations C-1 and C-2

T xz U (ab/2)[(Tb/tb)/3k2], (C-9)

and by substitution of the above relationships into (C-4) with some algebraic manip-
ulation, we obtain:

a na a ( lb2 .+V) 4- (1/3k 2 ) TbM2 + 1-2k2]/ (C-10)

prior to bottoming. The shear stress due to torsion can be related to the twist
angle3 of the beam through the following relationship:

" *xz (kl/k2)Gd[(#s/LT) + Cp/V')] CC-11)
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where *s is the twist angle along the length of the specimeu (see-Figure 3b), #p is
the twist angle between a pair of load and contact points relative -o #, (see Figure
3C), - is equal to either "a" for four-point beam. systems or L/2 for thre"-point
beam systems, k, i3 another numerical factor 3 given in Table 9, and G a E/2(l1v),
the shear modulus of the material.

Equation (C-2) can be equated to (C-il) and thus we obtain:

Tbe [klE/2(l+v)]bd2 [(d/LT)#*s + (d/i')#F] .(C-12)

where Tb is the torque when bottoming occurs. Thus, in order for (C-10) to be

applicable, Tb must be less than Tbe, and since Tb = (b/L')Mb and from (C-1) and
(C-12): e

Tb /Tb = [3k1E/ob(l+v)(b/V')]bd 2 [(d/LT)fs + Cd/t')#F] > 1.0, oa

n = (€'/b)[3kl(E/o)/Cl+v)][(d/L.)s + (d/Z')sF] > 1.0 (Ct13)

where ab is the bending stress at failure according to (C-i).

Note that Tb/Mh b/1' and for four-point loading z' a a; for three-point
loading 9' = L/2,t ius (C-10) becomes:

(a b/2) 1(l+v) + (1/3k 2)[Cb/A') 2 + 9(1-V)2k21 1C-14)

with n > 1.0.

Case II

If, however, n < 1.0 then bottoming occurs prior to or at failure and the
following analysis is applicable.

Equations (C-4) and (C-5) are still appropriate but the shear stress is

T = Tb /k2bd 2 . (C-1S)

Substitution of r from the above and ab from (C-1) into (C-S) gives

tan2e* = (Tb /Mb)/3(l-v)k 2 ,

but from (C-13) Tbe = nTb and thus:

tan26* W (nTb/Mb )/3(I-v)k2. (C-16)
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As in Case I, using a like procedure we determine a to be:
max

a nmax= Cab/2) I (l+v) + C1/3k2)[n2Cb•) ( (-)k2]/C-17)

with

n= (--)[ 3k1(E/ab)/Cl+v)][(d/LT),s + Cd/L'),*]'< 1.0. (C-18)

Equation (C-17)'is applikab.le to both systems since (Tb/b): = b/t' = b/a for the
four-point beam bending system, and (Tb/Mb) = 2b/L for the three-point system'. Thus
(C-17) becomes

a COb/ 2 ) (C1+v) + (1/3k 2 )[(nb/L,') 2 + 9(1-v) 2 k2 21/2 (C-19)
nmax

Notice when n = I, (C-19) reduces to (C-14).

Finally, the percent error is defined as:

(ab [(C~,O )/On 1100. (C-20)
max max

Errors were calculated in accordance with (C-20), with v 0 0.2S for Case I (n - 0.20,
0.40, 0.60, and 0.80) and Case II (n = 1.0),.

If, instead of plane strain (ez = 0), it had been assumed that a plane stress
(oz = 0) condition applied, then the maximum principal stresses are given by the
same Equations C-10, C-14, C-17, and C-19, but with Poisson's ration v = 0. Equa-
tions C-12, C-13, and C-18 are unchanged however, since G - E/2(l+v). The plane
strain analyses gives a higher error estimate, but the plane stress condition is
closer to the actual case since lateral constraint is negligible.

APPENDIX 0. WEDGING STRESSES

We allow the stress in the x direction in Figures 1 and 2 to be

ax = b + (2P/bd)OT, (D-l)

where ob is the bending stress, i.e., ab - (6Mx/bd 2 ), and 2P/bd is the local
stress, i.e., the so-called wedging .stress, and BT is a numerical factor dependent
on the normalized distance-x'/(d/2) on either side of the applied load point. 3

For convenience the value of OT at the tensile side of the beam as a function
of x'/d is given in Table D-1.

The percent error is defined as:

= [CYb-Ox)/Ox]100, (D-2)
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and substitution of (D-l) into the above equation gives

* {.rT/[((b/2P/bd)*0T]} 100. (D3)

Since b = 6Mx/bd2 , then (D-3) becomes:

£i {-0.T/(3Mx/Pd+0T)) 100. (D-4)

For a four-point loaded beam the bending moment is constant, i.e..,M1 = Pa,
and thus'equation (D-4) becomes: .

(-OT/[I(3a/d)+BT]} 100. CD-5)

From Table D-1 and Equation D-5 above, it is seen that the error is dependent
on OT or the fracture location, which is the normalized distance X'/d. These
errors have been computed for the four-point loaded beam and presented in Table lla.

For the three-point loaded beam, (D-4) is still applicable, but recalling that
Mx P/2[(L/2)-x'] and-substituting Mx into (D-4) gives:

"c =(-0T/(•CL/d)-.!(x'/d)+8T)}OO for X' < L/2. (D-6)

Again, as can be seen by (D-6), the percent error is dependent upon OT and
the normalized fracture location. These percent errors are given in Table l1b.

Table D-1. WEDGING PARAMETER OT

ix 1/d OT •

0 -0.1332
0.125 +0.0137
0.250 +0.0868
0.375 +0.0640
0.500 +0.0421
0.750 +0.0220
1.000 +0.0095
1.500 +0.00075

APPENDIX E. CONTACT POINT TANGENCY SHIFT

Consider the four-point loaded beam shown in Figure 4. The original span. "a"
-is seen to decrease by the amount (hl+h2 ) due to rolling or slipping of the beam
on its support and load points. The beam fulfills the condition:*

*It is m sd that a chang in the rsultt load ectom must s. ris to hoglacta reacions; but it i ssumed that this effect is man,
and is thus poted.
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dy2 /dx 2  MX/BI. (E-1)

The moments are defined as:

Nx-,a P(x-h1)# .0 S x S (a-h2 )

Xx - P~a-Chl+h2)], (a-h2) x 5 L-(a-h2).

Theslope-equations are

EI(dy/dx) -P[(x 2/2)-hlx] +. C1 , 0 5 x S (a-hj), and-(-2

EI(dy/dx) -P~a-(hl+h 2)]x + C2, (a-h2) !s x S L-(a-h2). (E-3)

Now when x -- a-h 2 ,

C, + p {[ (a-Il2)2/2] -(a-h 2 )hi} P[a-(h14.h2).](a-h 2) *C 2, Or

CCj- -(P/2)(a-h 2 )2 .- (E-4)

Note also that when x = L/2 and dy/dx - 0 in (E-3),

C2 *-jP~a-(h 1 4.h2 )]L/2. -)

After substitution Of C2 into (E-4) we obtain:

C1  (P/2) {(a-h2 )2 - L[a-(hi4.h2 )} (E-6)

Substitution of tb-se constants into the appropriate slope equations gives:

HI(dy/dx) P[(x2 /2)-h~x] + (P/2) {(a-h 2)- L~a-(hie~h2 )]} (E-7)

with 0 ý x I (a-h2), and

EI(dy/dx) - P~a-(hl+h2 )] (x-(L/2)J, (5-8)

with (a-h 2 ) -S x :5 L-(a-h2 ).

Now when x fri:. 1. geometry dy/dx =-h]1 /AffP!=h21 -h1 /P1 , and-when.
x a a-h2 , dy/cz~ -h2/zh -h2/P2. The above relationships are used with (E-7)
and (148) and we, obtain:

(p1 /d _________ (h 1 /a) (H/0b)(j/) (hi/a) 2 
- 'a)2 + (L/a)[l-(h1/a *h 2/a)] (E-9)
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1-Oha/a) *(1/2){[(L/2@) .(h 1/4) .All

- [(L?2a) + (hi/a) 4 Ap) -4(ja L2)*A) (8410)

uhere A2 -B2b/p/)

Note that for the th? se-point loading case h2 -0, Lla 1ý 21, and P.P2'n
(B-9) reduces to:.

pj/d - [2(h1/L)(B/ob)]/f(2h1/L)-l]2, H-l

and the region of validity of (E-10) vanishes.

The percent error is defined as:

~'F 1(0b-x)/0x~l00 - [(Nj,4&)/I4xJlO0, Or

a (((hi/a) + (h2./a)]/[l - (h1/a) -(hj/a)1)) 00

for four-point loading and

i =t(2hl/L)/(l -(2h,/L)]JlOO (B-13)

for three-point loading.

Calculations were performed by the following procedure.- Itwas assumed that
Ilabu - x 103, and thus A2 a (1 x 103)/(01/d); then for the 1/3- and 1/4-four-
point loading case &lL = 1/3 and 1/4, numerical values we're assigned to p1/d and
h1 /a and then h 2/9 was determined fram (8-10) hsrnm alaasofhj
and corresponding h2/a were substituted into (1-9) to determine pl/d. 'This same
procedure was used for the three-point loading case -with ha - 0 and 1./a 2. Onice
the parameters hi/a, h2/4, P2/d aqd pj/d are known, percent errors according to
(B-12) 1"or the four-point loading case and (B-13) for the three-point loading case
can be determined. Such. errors are given in Tables 12a-c.

APPENDIX F. ERROR DUE TO NEGLECTIND CHANGE IN MOMENT OF INERTIA

CAUSED BY CORNER RADII OR CHMFERS

Corner Radius

Consider Figure Sa, which shows the cross section of a restutguler be@* with.
corner radii r. The true moment of Inertia (I.). about the centroidal or nfmtral
axis x-x is:

(Ix) r -b(d-2r) 3/12 *(b-2r)rS/6 *(l/2)(b.2r)(d-V)2ar

*4r4(w/l6 -4/9w) + Ww2[d/2 -r(l -4/3w)1
2. F)
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most investigators,, however, will neglect the loss of inertia when calculating the
b 4USg "TOSS due to eOmuer. redit aa4 fs#tim4 that-'1 bd /1~3 -2 thq ro i

stress becomes

Lb([bd4-z'3 . 2(b.2r)r 3 +6(b'-2r) (d-r)r 2 .48r"(.1- 9w) o, 1211 I~ (

bdS

1 .0~ X 100 (F-2)

450 Chamfer

Now consider Figure Sb, which shows a rectangular beam with 450 corner chamfer
c. The true moment of inertia (I ) about the x-x axis is:

(I~ ~*(bd3/12) - (C2 /9)[C2 + (1/2)(Sd-2c) 2J (P.3)

and thus

-41C,2C2 + I. (3d- 2c) 2]
X 100. (P-4)

The-errors were calculated for various values of'd/b as a function of rid from
(F-2) and c/d from (F-4). These results are shown in Table 13.

APPENDIX 6. COMPUER ANALYSIS WORKSHEET 1
The tables-in this report should suffice to permit error determinations. A

computer program is available at MTwL to expedite such computations however. -Wi
will compute the error aMalygis Upon VeqUOSt if the following form is filled &AV
as -completely aspossible and mailed to Wr. George Quinn.

42



Replies will be kept confide-tial.

Pleas* Use consistent natits of measure.-. ii*% all dlum~simi I& inehs, #`lull motwis,
or centimeters, etc.,'

1. Three- or four-point flexure: (circle one) 4

2. Specimen height (thickness)__________

3. Specimen width

4. Specimen total length __________

S. Specimen edge chamfor radius or iength* (circle one)

6. Fixture outer span

7. Fixture inner span (if 4-point)

8, Fixture outer bearing(s), radius__________

9. Fixture inner bearing(s), radius__________

10. Precision Of the micrometer used to measure
specimen height and width __________

11. Accuracy Of the fixture spa=s-

12. Specimen twist or lack of parallelism of two faces * __________

13. Fixture twist 4D or lack of parallelism of bebrings __________

14. Length of bearing fixture 0 __________

15. Accuracy of centering the inner bearting(s) relative'
to the outer bearing __________

16. Do your fixture bearings rotate? Or are they
fixedsiuch as knife edges? (circle one) r~aefied

17. Do your fixture bearings articulate to ea*coinodate
specimen twist or warpage? (circle one) Y" V

28. Error in measured break load _________

a 0.1, .j Length SWUcMe Neon- B~~earings

(Twist)

Chuifer Nowpsaallelip
(Trsrorro
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ST.CMT-IMA-T 6 May 1988
MEMORAD. FOR: SEE DISTRIBUTION

SUBJECT: Technical Report MTL TR 87-35, "Errors Associated with Flexure
Testing of Brittle Materials"

Errata sheet for subject report:

Page 6, Table 4:

Change E/ab - 500 to E/Ob - 1000.

Page 13, Equation 18a:

Add parentheses around Gb/ 2  (ab/ 2 ).

Page 14, Equation 18b:

Change the quantity (e/ab) to (E/Gb).

Page 23, Table 14:

The second line from the bottom of the table; change p to P.

Page 37, Equation C-14:

Change the quantity (b/1') 2  to (n/i,') 2 .

Page 41, Equation F-l:

Change the quantity w/16 to w/18.

FOR THE COMMANDER:

SDIANE VALERI
D.-kt Chief
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